2024 Via Appia Restriping Discussion

March 11, 2024

Welcome!

What are We Here to Discuss?

Education – Traffic Laws, Terminology, Perspectives

City of Louisville

Data – Observations and Information

Expectations – What are resident expectations?

Future – What does the path forward look like for this corridor?

Welcome!

Rules of Engagement

Emotion – Traffic brings out emotions.

Words – Be constructive not demeaning.

Comment – For, against, unsure, learning, what about this or that?

Bring it Home – Tell us if you prefer to Prioritize cars or prefer a Balanced System.

Polk/Dahlia

Approximately 60 homes on Polk/Dahlia wanted less cut through traffic and less speeding.

Traffic reduced 3-23%

Speeds reduced 2-3 mph

Review in Fall or Spring with Neighborhood to discuss future or final configurations.

This is a different topic and not up for discussion today.

Colorado Traffic Law (CRS 42-4-802)

(1) When traffic control signals are not in place or not in operation, the driver of a vehicle shall yield the right-of-way, slowing down or stopping if need be to so yield, to a pedestrian crossing the roadway within a crosswalk when the pedestrian is upon the half of the roadway upon which the vehicle is traveling or when the pedestrian is approaching so closely from the opposite half of the roadway as to be in danger.

City Expectation: Drivers stop and wait at crosswalks when pedestrians are present and show intent.

(3) A pedestrian shall not suddenly leave a curb or other place of safety and ride a bicycle, electrical assisted bicycle, or electric scooter, or walk or run into the path of a moving vehicle that is so close as to constitute an immediate hazard.

City Expectation: Pedestrians and Bicyclists be prepared to stop, look both ways and ensure its clear at all stops before crossing.

National and Colorado Trends Pedestrian and Bike Fatalities Rising

Pedestrian and bike deaths by age

Pedestrians and cyclists killed in traffic crashes last year ranged across all age groups.

Source: Colorado Department of Transportation

The New York Times

Its Not Just about the Middle of the Day

Pedestrian Deaths by Time of Day

Louisville Incidents

2018 95th Street and Hecla Death - Dawn

2019 SBR/Eisenhower Child Hit/Grazed

2020 SBR/Centennial Death - Night

2021 Via Appia/SBR Bicyclist Hit in Crosswalk

2022 Polk/Dahlia Child Hit/Grazed - Sun Glare

2023 Polk/Dahlia Jogger Hit Serious Injury - Sun Glare

2023 Cherry Street Death

City_{of} Louisville

2023 SBR/Plaza Pedestrian Serious Injury - Night

Proactive vs Reactive Improvement

City Council Directive Improve Safety!

Via Appia Decision Logic

City_{of} Louisville

Type I vs Type II Decision

2015 Paved ~ Bike Lanes Added

2022 - 2023 Uptick in Accidents Community and Council Desired Action

2023 Due for Maintenance Re-striping

2024 - 2026 Pilot Lane Reduction, Iterate Design

2026 Planned for Repaving (Re-evaluate)

Striping only. No curb and gutter or permanent changes.

Published: 2016

How we think about decision making at Amazon

One-way doors (type 1): Decisions that are consequential and nearly irreversible; should be made methodically, carefully, slowly, with great deliberation and consult **I**his wo-way doors (type 2): Decisions that are Changeable and reversible; should be made quickly by high judgement individuals or small groups. If you've made a suboptimal decision, you can reopen the door and go back through. As organizations get larger, there seems to be a tendency to use type I. decision-making process On most decisions, including many type? decisions. The end result of this is slowness, unthoughtful risk aversion, failure to experiment sufficiently, and consequently diminished innovation. We'll have to figure out how to tight that tendency.

Via Appia Previous Public Input

2012/2013 Comprehensive Plan

2015 Pavement Program - Add Bike Lanes

2019 Transportation Master Plan

2020 Approved Budget Funding \$1,500,000

2022 Approved Budget Funding \$1,300,000

2022 DRCOG TIP Public Input - Highly Supported

2023 Budget Process \$2,800,000

2023 DRCOG TIP Public Input - Evacuation/Cost

2023 Maintenance Restriping \$195,000

Ongoing Resident concerns regarding safety, speeding, crosswalks.

Existing Configuration

Bike Lanes added in 2015

Proposed Interim

2023 Maintenance Striping

Revised Interim

2024 Maintenance Striping

Today Configuration and Costs

- 2023 Budget for Significant Reduction \$2,500,000 million
- Existing Restriping \$30,000
- Interim 2 Lane with Buffered Bike Lane Restriping \$180,000
- Revised 2 Lane with additional width and buffering \$195,000 (+\$15,000)

Recreation Center

Left Turn Acceleration Lane

Right Turn Lane Preserve Pine Street

Remove

- Tyler ~ 2 Directions
- Church Lane Eastbound

Add 3 Left Turn Lanes

Pine Street Existing

Added Griffith

Added Harper

Added Via Capri

South Boulder Road Intersection Improvements

Maintains Existing Dedicated Left and Right Turn Lanes

Increased Right Turn Lane Queue

Dedicated Bus Pull Out Area

Add Bike Queue Box

Pedestrian and Bicycle Safety

Reduce Speeds from 6-8 mph over to around 3 mph over the posted speed limits.

Add Buffered Bike Lanes.

Shorten Crosswalks or risk areas on average from 30 to 100 feet wide to 20 feet wide. Added Harper.

Via Appia Pro's and Con's

Likely Pro's

- 1. Speeds will be reduced by up to 5 mph and more closely be at posted speed limits. This decreases accident severity for cars, bikes, and pedestrians.
- 2. Crossing will be shortened for bicycles and pedestrian. Increased comfort, safety, and less stress.
- 3. Buffered bike lanes will improved safety and open usage to a wider audience.
- 4. Recreation Center left turn will be significantly safer.
- 5. Add Left Turn safety for the Harper, Griffith, and Via Capri.
- 6. Improve bus interaction at South Boulder Road area.
- 7. Improve right turn queue at South Boulder Road.
- 8. Improve crossings near transit stops that don't have flashing beacons.

Possible Con's

- The slow car and I can't get around it. Additional 30 seconds the entire corridor when reduced from 40 mph to 30 mph.
- Gaps in traffic. Data shows differently.
- Removal of Tyler and Church right turn lanes. Very small amount of traffic.

I was right!

It didn't work. Fallbacks?

Black out striping and go back to 4 lanes. \$30,000 - \$50,000.

All way stops at key intersections. \$1,000

Lightweight Roundabout \$300,000

HAWK Signal \$400,000

Traffic Signal \$800,000

Roundabout \$1,000,000

Data

- Levels of Service/Comfort/Stress
- Street Context
- Other Factors
- Previous Studies and Public Input
- Past and Present Traffic Speed and Counts
- Design Standards Review
- Field Review
- Drone Review

City of Louisville

Terminology

All Ages and Abilities 8 - 80 years old

85th Percentile Speed

The speed at which or below 85 percent of drivers are traveling.

Average Daily Traffic (ADT)

Average amount of traffic on a street each day.

Who we are building for

The programme targets practical trips and journeys where mode shift to cycling would benefit the wider transport system. This is about targeting congestion and improving access to jobs and study across Auckland.

SHORT-MEDIUM DISTANCE COMMUTES CONNECTIONS TO MAIN STATIONS TRIPS TO SCHOOL EVERYDAY HOUSEHOLD TRIPS

Target Audience

Everyday Louisville Residents

BICYCLISTS

PEDESTRIANS

1	High Comfort for All
2	High Comfort for Adults
3	Increasing Stress for Most
4	High Stress Experience

Level of Service/Stress Targets

- All Ages and Abilities
- All Modes of Transportation
- Community Values

Street Context

Volume of Traffic and Road Classification (ADT)

Posted Speed vs 85th Percentile (Survey)

School, Regional Trail, Vulnerable Community, Other Factors

Context of Road Uses Residential, Commercial, Industrial

Residential On Street Parking

Police and Fire Delay/Response Times

Evacuation Routes

L City_{of}

Design Standards and Existing Conditions

Other Considerations: Intersection Turn Clearance Drainage Adjacent Home Access Utilities Surrounding Activities Number of Complaints Introduction of Liability Accident History (if Any) Existing Speeds/Volume

Speed Data should link **Context** and **Decisions** At the end of the day is it worth it to do?

City

Bicyclist and Pedestrian Data

- National Survey of 50 largest metro areas suggests most people are Interested but Concerned (54%)
- Arterial Streets (LTS 3/4) are generally used by Somewhat to Highly Confident (12%)
- 54% Interested but Concerned Individuals prefer Buffered or Protected Bike Lanes
- Buffered and Protected bike lanes make the street network Accessible to the majority.

HIGH COMFORT

beginnenti and coolanga an highly coordinations, patientian franchis, and assist nongatale for podostrams of all open and all dires, traileding annot all dires, traileding annot all dires, and applied Ohldher water and another any franchisto activity anacourt and the activity activity and the activity activity and activity and activity activity activity and activity activ

City of Louisville

HIGH COMFORT

LOW COMFORT

Waking is a turner and is very uncertificitable or even impossible. Crussings and sepremb function for m accumendation for pertentners.

2012/2013 Comprehensive Plan

Via Appia ~ Right Sizing, 37% Cut Through, Heavy Transit Usage (Enhance Safety/Accessibility)

2019 Transportation Master Plan (TMP) 1,500 Comments and 163 Online Surveys

Transportation Master Plan

Goal #1 Operate efficiently and safely for all users.

Goal #2 Be a cohesive and layered system of streets and trails for walking, biking, transit, driving, and recreation.

Goal #5 Increase mobility options and access for people of all ages, abilities, and income.

City of

2019 TMP Project

Improve Signage

Enhance Crosswalks

Remove Right Turn Lanes

Create Median Pedestrian Refuges

Additional Pavement Space for Bike Lanes

PROJECT 1: CORRIDOR IMPROVEMENTS, CONT. CP4: VIA APPIA IMPROVEMENTS

Summary

Via Appia is a collector that connects many neighborhoods to South Boulder Road, McCaslin Boulevard, as well as the Recreation Center, parks, and trails. Via Appia is a wide street, particularly at intersections where there are center and right turn lanes. Data shows many cars traveling well over the posted speed limit. Because the corridor primary serves as a connection to local neighborhoods and includes several trail connections and transit stops, improving safety and crossings along this corridor is recommended. This project includes a series of improvements along the roadway and at key intersections to improve safety and promote multimodal use of the corridor.

Implementation

The City could construct the recommended improvements as one project, or at individual locations over time as determined by budget and prioritization. When the corridor is complete, the improvements should be consistent to provide predictability for users along the corridor.

Key Considerations

- Right-turn lanes are not needed for vehicular traffic an can be removed to shorting pedestrian crossing distances.
- Road width would allows for incorporation of pedestrian refuges in the median and additional pavement space for bicycle lanes.
- Pine Street and Via Appla intersection has poor visibility due to both elevation change and curvature of the roadway and should be a priority.
 - Underpass at South Boulder Road connecting to existing trails
 - Provide advanced signage to address poor visibility at trail crossing.
 - Additional crosswalk markings, remove turn lane, evaluate for Rectangular Rapid Flashing Beacons (RRFB).
 - Remove turn lanes, evaluate for RRFB at Tyler Ave.
 - Remove turn lanes, evaluate for RRFB.
 - Additional advanced signage and add pedestrian signal at Powerline Trail.

Draft - August 12, 2019

4-18 Policies, Projects & Programs

School Crossing

Louisville Middle School

Street Classification Via Appia on Lower End. More Like a Minor Arterial

Classification	Average Daily Traffic (ADT)
Arterial	5,000 - 30,000
Collector	1,500 - 5,000
Local	0 - 1,500
Industrial	0 - 1,500

ityof

Via Appia Average ~ 9,000 ADT 4 Lanes ~ 35,000 ADT ~ 26% 2 Lanes ~ 20,000 ADT ~ 45%

Via Appia Speed Distribution. **6-8 mph** over Speed Limit.

Via Appia - 85th Percentile

City_{of} Louisville

Cumulative Speed Distribution (85th %/Posted Speed)

Federal Highway Bike Selection Guide

Contract of transportation Federal Highway Administration

City of Louisville PERSONARY 2018

Driver Level of Service

FFS Along Via Appia ~ A, Intersection LOS Improved 13% to A-C from D-E

						I	П	U ,	ш		IV
۹ ~ +3%		DF	RIVERS	Range o speed	f free-flow s (FFS)	55-45 mp	h 4	5-35 mph	35–30 m	ph	35-25 mph
				Typical	FFS	50 mph	4	0 mph	35 mph		30 mph
3~+7%		1		LOS				0.000			
				A		>42	>	35	>30		>25
				в		>34-42	>	28-35	>24-30		>19-25
C ~ Same		-	-	C		>27-34	>	22-28	>18-24		>13-19
o oumo		LEVEL OF SERVICE		D		>21-27	>	17-22	>14-18		>9-13
			OT SERVICE	E		>16-21	>	13-17	>10-14		>7-9
) ~ -10%		_	(LOS)	F		510	15	15	510		57
		A-C	High Comfort Driving			12/1/23			11/17/23		
= ~ -3%		0				4 Lane			2 Lane		
		U	Some Traffic	Tota	l (Cars)	42			43		
	>	E	Growing Traffic	Average	Delay (sec)	19			17		
		F	Large Delays	LOS	Delay (sec)	Count (cars)	%	Cum %	Count (cars)	%	Cum %
	1			А	< 10	14	33%	33%	16	37%	37%
	h = = -	Adopted	minimum	В	10-15	8	19%	52%	12	28%	65%
		threshold	d for Arterials	С	15-25	5	12%	64%	5	12%	77%
		No adop	ted threshold	D	25-35	8	19%	83%	4	9%	86%
		for Colle	ctors and	E	35-50	7	17%	100%	6	14%	100%
litvof		Local roa	ids	F	> 50	0	0%	100%	0	0%	100%

BICYCLISTS

>	1	High Comfort for All
>	2	High Comfort for Adults
	3	Increasing Stress for Most
	4	Strong and Experienced Bicyclists Only
E.		

 – – Desired facility level for an All Ages and Abilities network. May not be feasible in some land use contexts.

BIKE LANE AND BUFFERED BIKE LANES

Used in situations where there is a dedicated bike lane with or without a painted buffer. Bike lane width is measured exclusive of the gutter pan.

# of Auto Lanes	Bike Lane Width	Posted Speed (Actuals When Available)							
	(Includes Buffer)	20 mph	25 mph	30 mph	35 mph	40 mph	45 mph	50+ mph	
2-3	6'+	LTS 1	LTS 1	LTS 2	LTS 2	LTS 3	LTS 3	LTS 4	
	4' or 5'	LTS2	LTS 2	LTS 2	LTS 2	LTS 3	LTS 4	LTS 4	
4-5	6'+	LTS 2	LTS 2	LTS 2	LTS 2	LTS 3	LTS 3	LTS 4	
	4' or 5'	LTS 2	LTS 2	LTS-2	LTS 3	LTS 3	LTS 4	LTS 4	
6+	Any Width	LTS 3	LTS 3	LTS 3	LTS 3	LTS 4	LTS 4	LTS 4	

Adjustment Factors

- Heavily Utilized Parking Adjacent to a 4' or 5' Bike Lane Add 1 LTS
- Roadway Pavement Condition Index Rating Below 70 Add 1 LTS
- Frequent Commercial Driveway Crossings Add 1 LTS

RAISED/PROTECTED LANES AND MULTI-USE PATHS

Used in situations where there are protected bike lanes or multi-use paths. For all segments (between intersections), these would be considered LTS 1.

Adjustment Factors

- Raised Bike Lanes At >35 MPH Add 1 LTS
- Frequent Commercial Driveways Add 1 LTS
- Bike lanes using only candles Add 1 LTS

Bicycle Lane LTS

Improve from LTS 3/4 to LTS 2

BICYCLISTS

Desired facility level for an All Ages and Abilities network. May not be feasible in some land use contexts.

UNSIGNALIZED INTERSECTIONS

Used in situations where there is no signal. To rank, the highest stress score of any leg would be utilized.

Dested Cound	Total Auto Lanes Crossed					
Posteo Speed	1-3 Lanes	4-5 Lanes	6+ Lanes			
20-25	LTS 1	LTS 2	LTS 4			
30	LTS 1	LTS 2	LTS 4			
35	LTS 3	LTS 3	LTS 4			
40+	LTS 3	LTS 4	LTS 4			

Adjustment Factors

Adding a Rectangular Rapid Flashing Beacon (RRFB) – Lower 1 LTS
Refuge medians of at least 8' with a vertical element would reduce the total

number of lanes crossed at one time to the distance from curb to median.

Intersections with a Bike Lane and Right Turn Lane – Add 1 LTS

ROUNDABOUTS

Used in situations with a roundabout to describe the experience when bicyclists take the lane. For those mixing with pedestrians, the pedestrian table would be used.

Circulating Lanes	Total Entry Leg ADT (VPD)	LTS
1	<6000	LTS 2
1	>6000	LTS 3
2+ (Partial or Full)	Any	LTS 4

Adjustment Factors

Slip lane present – Add 1 LTS

Bicycle Crossing LTS

Improve from LTS 3/4 to LTS 1/2

SIDEWALK WIDTH AND CONDITION

Sidewalk Condition						
Very Good	Good	Fair	Poor			
LTS 4	LTS 4	LTS 4	LTS 4			
LTS 3	LTS 3	LTS 3	LTS 4			
LTS 2	LTS 2	LTS 2	LTS 4			
LTS 1	LTS 1	LTS 2	LTS 3			
	Very Good LTS 4 LTS 3 LTS 2 LTS 1	Sidewalk Very Good Good LTS 4 LTS 4 LTS 3 LTS 3 LTS 2 LTS 2 LTS 1 LTS 1	Sidewalk ConditionVery GoodGoodFairLTS 4LTS 4LTS 4LTS 3LTS 3LTS 3LTS 2LTS 2LTS 2LTS 1LTS 1LTS 2			

Adjustment Factors

- Low volume residential streets with 4'-5' sidewalk Lower 1 LTS
- 5' detached sidewalk in very good or good condition Lower 1 LTS

UNSIGNALIZED CROSSINGS

Constant of the	Total Auto Lanes Crossed At One Time				
Speed Limit	1-3 Lanes	4-5 Lanes	6+ Lanes		
20-25	LTS 1	LTS 2	LTS 4		
30	LTS 1	LTS 2	LTS 4		
35	LTS 2	LTS 3	LTS 4		
40+	LTS 3	LTS 4	LTS 4		
40+	LTS 3	LTS 4			

Adjustment Factors

- No Illumination Present Add 1 LTS
- Ramps Inaccessible per Inventory Add 1 LTS
- Add a Rectangular Rapid Flashing Beacon (Median required when over 3 lanes) Lower 1 LTS
- Pedestrian refuge medians of at least 8' with a vertical element would reduce the total number of lanes crossed at one time to the distance from curb to median.

Pedestrian LTS

Improve from LTS 3/4 to LTS 1/2

 Desired facility level for an All Ages and Abilities network. May not be feasible in some land use contexts.

Via Appia Improvement Metrics

Description	Vehicle LOS 4 Lanes	Bicycle LTS 4 Lanes	Pedestrian LTS 4 Lanes	Vehicle LOS 2 Lanes	Bicycle LTS 2 Lanes	Pedestrian LTS 2 Lanes
Along Corridor	А	3-4	1	А	2	1
Eldorado Lane	A - E	4	4	A - E	1	2
Recreation Center	A - E	3	3	A - C	2	1
Pine Street	A - E	4	4	A - E	3	2
Church Lane	A - E	-	-	A - E	-	-
Tyler Avenue	A - E	4	4	A - E	2	2
Sagebrush Way	A - E	3	3	A - E	1	1
Lafayette Street	A - E	3	3	A - E	1	1
Lake Park	-	2	2	-	1	1
Griffith/Harper	A - E	3	3	A - E	1	1
Via Capri	A - E	3	3	A - E	1	1

ChatGPT

Bike and pedestrian comfort is more important than vehicle level of service for several reasons:

Health and Well-being: Encouraging biking and walking promotes physical activity, leading to improved health and well-being for individuals. Providing comfortable and safe facilities for cyclists and pedestrians can help reduce the risk of sedentary lifestyle-related diseases such as obesity, heart disease, and diabetes.

Environmental Impact: Biking and walking are sustainable modes of transportation that have minimal environmental impact compared to vehicle use. By prioritizing bike and pedestrian comfort, cities can reduce air pollution, greenhouse gas emissions, and noise pollution, contributing to a cleaner and healthier environment.

Equity and Accessibility: Improving bike and pedestrian infrastructure can enhance accessibility for all members of the community, including those who cannot afford or are unable to drive. By prioritizing comfort for cyclists and pedestrians, cities can promote equity and ensure that transportation options are accessible to everyone, regardless of income or ability.

Community Connection: Biking and walking facilities can help create vibrant and connected communities by encouraging social interaction and active transportation. Providing comfortable and safe spaces for cyclists and pedestrians can enhance the overall quality of life in neighborhoods and foster a sense of community.

Economic Benefits: Investing in bike and pedestrian infrastructure can lead to economic benefits for local businesses and neighborhoods. By creating attractive and comfortable spaces for cyclists and pedestrians, cities can attract more foot traffic, support local businesses, and enhance property values.

Overall, prioritizing bike and pedestrian comfort over vehicle level of service can lead to a healthier, more sustainable, equitable, and connected community for all residents.

How can I help you today?

